Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(3): 659-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290972

RESUMO

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.


Assuntos
Anexina A2 , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Autofagia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição de Choque Térmico/genética , Anexina A2/genética , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Doxorrubicina , Sirolimo
2.
Int J Cancer ; 152(9): 1933-1946, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36691829

RESUMO

Ras mutations have been frequently observed in human cancer. Although there is a high degree of similarity between Ras isomers, they display preferential coupling in specific cancer types. The binding of Ras to the plasma membrane is essential for its activation and biological functions. The present study elucidated Ras isoform-specific interactions with the membrane and their role in Ras-mediated biological activities. We investigated the role of a lipid raft protein flotillin-1 (Flot-1) in the activations of Ras. We found that Flot-1 was co-localized with H-Ras, but not with N-Ras, in lipid rafts of MDA-MB-231 human breast cells. The amino-terminal hydrophobic domain (1-38) of Flot-1 interacted with the hypervariable region of H-Ras. The epidermal growth factor-stimulated activation of H-Ras required Flot-1 which was not necessary for that of N-Ras in breast cancer cells. Flot-1 interacted with son of sevenless (SOS)-1, which promotes the conversion of Ras-bound GDP to GTP. Notably, Flot-1 was crucial for the interaction between SOS1 and H-Ras/K-Ras in breast and pancreatic cancer cells. Stable knockdown of Flot-1 reduced the in vivo metastasis in a mouse xenograft model with human breast carcinoma cells. A tissue microarray composed of 61 human pancreatic cancer samples showed higher levels of Flot-1 expression in pancreatic tumor tissues compared to normal tissues, and a correlation between K-Ras and Flot-1. Taken together, our findings suggest that Flot-1 may serve as a membrane platform for the interaction of SOS1 with H-Ras/K-Ras in human cancer cells, presenting Flot-1 as a potential target for Ras-driven cancers.


Assuntos
Proteínas de Membrana , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Neoplasias Pancreáticas/metabolismo
3.
J Cell Physiol ; 236(10): 7014-7032, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33748944

RESUMO

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment have been associated with tumor progression in breast cancer. Although crosstalk between breast cancer cells and CAFs has been studied, the effect of CAFs on non-neoplastic breast epithelial cells is not fully understood to date. Here, we investigated the effect of CAFs on aggressive phenotypes in non-neoplastic MCF10A breast epithelial cells. CAFs induced epithelial-to-mesenchymal transition (EMT) and invasive phenotype in MCF10A cells. S100A8, a potential prognostic marker in several cancers, was markedly increased in MCF10A cells by CAFs. S100A8 was crucial for CAFs-induced invasive phenotype of MCF10A cells. Among cytokines increased by CAFs, interleukin (IL)-8 induced S100A8 through transcription factors p65 NF-κB and C/EBPß. In a xenograft mouse model with MCF10A cells and CAFs, tumor was not developed, suggesting that coinjection with CAFs may not be sufficient for in vivo tumorigenicity of MCF10A cells. Xenograft mouse tumor models with MDA-MB-231 breast carcinoma cells provided an in vivo evidence for the effect of CAFs on breast cancer progression as well as a crucial role of IL-8 in tumor growth and S100A8 expression in vivo. Using a tissue microarray of human breast cancer, we showed that S100A8 expression was correlated with poor outcomes. S100A8 expression was more frequently detected in cancer-adjacent normal human breast tissues than in normal breast tissues. Together, this study elucidated a novel mechanism for the acquisition of invasive phenotype of non-neoplastic breast cells induced by CAFs, suggesting that targeting IL-8 and S100A8 may be an effective strategy against breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Calgranulina A/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , Comunicação Parácrina , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Calgranulina A/genética , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Interleucina-8/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fenótipo , Transdução de Sinais , Sulfonamidas/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Cancer ; 147(9): 2550-2563, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449166

RESUMO

Activation of sterol regulatory element-binding protein 1 (SREBP-1), a master lipogenic transcription factor, is associated with cancer metabolism and metabolic disorders. Neddylation, the process of adding NEDD8 to its substrate, contributes to diverse biological processes. Here, we identified SREBP-1 as a substrate for neddylation by UBC12 and explored its impact on tumor aggressiveness. In cell-based assays, SREBP-1 neddylation prolonged SREBP-1 stability with a decrease in ubiquitination. Consequently, NEDD8 overexpression facilitated proliferation, migration, and invasion of SK-Hep1 liver tumor cells. MLN4924 (an inhibitor of the NEDD8-activating enzyme-E1) treatment or UBC12 knockdown prevented SREBP-1 neddylation and tumor cell phenotype change. This effect was corroborated in an in vivo xenograft model. In human specimens, SREBP-1, UBC12, and NEDD8 were all upregulated in hepatocellular carcinoma (HCC) compared to nontumorous regions. Moreover, SREBP-1 levels positively correlated with UBC12. In GEO database analyses, SREBP-1 levels were greater in metastatic HCC samples accompanying UBC12 upregulation. In HCC analysis, tumoral SREBP-1 and UBC12 levels discriminated overall patient survival rates. Additionally, MLN4924 treatment destabilized SREBP-1 in MDA-MB-231 breast cancer cells and in the tumor cell xenograft. SREBP-1 and UBC12 were also highly expressed in human breast cancer tissues. Moreover, most breast cancers with lymph node metastasis displayed predominant SREBP-1 and UBC12 expressions, which compromised overall patient survival rates. In summary, SREBP-1 is neddylated by UBC12, which may contribute to HCC and breast cancer aggressiveness through SREBP-1 stabilization, and these events can be intervented by MLN4924 therapy. Our findings may also provide potential reliable prognostic markers for tumor metastasis.


Assuntos
Neoplasias da Mama/mortalidade , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/mortalidade , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Feminino , Humanos , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Metástase Linfática/patologia , Camundongos , Proteína NEDD8/metabolismo , Prognóstico , Estabilidade Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proteína de Ligação a Elemento Regulador de Esterol 1/análise , Taxa de Sobrevida , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/análise , Ubiquitinação/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncol Lett ; 18(6): 6852-6868, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31807189

RESUMO

There is a wide disparity in the incidence, malignancy and mortality of different types of cancer between each sex. The sex-specificity of cancer seems to be dependent on the type of cancer. Cancer incidence and mortality have been demonstrated as sex-specific in a number of different types of cancer, such as liver cancer, whereas sex-specificity is not noticeable in certain other types of cancer, including colon and lung cancer. The present study aimed to elucidate the molecular basis for sex-biased gene expression in cancer. The mRNA expression of the epithelial-to-mesenchymal transition-associated genes was investigated, including E-cadherin (also termed CDH1), vimentin (VIM), discoidin domain receptor 1 (DDR1) and zinc finger E-box binding homeobox 1 (ZEB1) in female- and male-derived cancer cell lines by reverse transcription (RT)-PCR and the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) database analysis. A negative correlation was observed between DDR1 and ZEB1 only in the female-derived cancer cell lines via RT-PCR analysis. A negative correlation between DDR1 index (defined by the logarithmic value of DDR1 divided by ZEB1, based on the mRNA data from the RT-PCR analysis) and an invasive phenotype was observed in cancer cell lines in a sex-specific manner. Analysis of the CCLE database demonstrated that DDR1 and ZEB1, which are already known to be sex-biased, were negatively correlated in female-derived liver cancer cell lines, but not in male-derived liver cancer cell lines. In contrast, cell lines of colon and lung cancer did not reveal any sex-dependent difference in the correlation between DDR1 and ZEB1. Kaplan-Meier survival curves using the transcriptomic datasets such as Gene Expression Omnibus, European Genome-phenome Archiva and The Cancer Genome Atlas databases suggested a sex-biased difference in the correlation between DDR1 expression pattern and overall survival in patients with liver cancer. The results of the present study indicate that sex factors may affect the regulation of gene expression, contributing to the sex-biased progression of the different types of cancer, particularly liver cancer. Overall, these findings suggest that analyses of the correlation between DDR1 and ZEB1 may prove useful when investigating sex-biased cancers.

6.
Biol Pharm Bull ; 42(4): 594-600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930418

RESUMO

Sex-related incidence and outcomes were reported in various cancers, including colorectal cancer. 5-Fluorouracil (5-FU) is widely used as an essential chemotherapeutic agent for colorectal cancer. However, sex-based differences in 5-FU toxicity have yet to be reported in human cancer cell lines and xenograft mouse models to date. Here, we investigated, for the first time, sex-based differences in 5-FU toxicity using human colon cancer cell lines, xenograft mouse models, and Korean patients' data. Female-derived colon cancer cell lines exhibited greater 5-FU-induced cytotoxicity than male-derived colon cancer cell lines. We established two xenograft mouse models: one with a male-derived human colon cancer cell line injected into male mice (a male-xenograft model) and another involving a female-derived human colon cancer cell line injected into female mice (a female xenograft model). Treatment with 5-FU inhibited tumor growth and led to hematological toxicity in a female xenograft model more potently than in a male xenograft model. We analyzed the data obtained from Korean patients with colorectal cancer to examine sex differences in adverse drug reactions caused by 5-FU. Korean female patients with colorectal cancer who received 5-FU chemotherapy experienced more frequent adverse drug reactions including alopecia and leukopenia than male patients. Taken together, we demonstrated that female may be associated with increased risk of toxicity to 5-FU treatment in colorectal cancer based on in vitro and in vivo investigations and clinical data analysis. Our study suggests sex as an important clinical factor, which predicts induction of toxicity related to 5-FU treatment.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/efeitos adversos , Idoso , Animais , Povo Asiático , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Caracteres Sexuais , Carga Tumoral
7.
Biomol Ther (Seoul) ; 26(4): 335-342, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949843

RESUMO

The incidence and mortality of various cancers are associated with sex-specific disparities. Sex differences in cancer epidemiology are one of the most significant findings. Men are more prone to die from cancer, particularly hematological malignancies. Sex difference in cancer incidence is attributed to regulation at the genetic/molecular level and sex hormones such as estrogen. At the genetic/molecular level, gene polymorphism and altered enzymes involving drug metabolism generate differences in cancer incidence between men and women. Sex hormones modulate gene expression in various cancers. Genetic or hormonal differences between men and women determine the effect of chemotherapy. Until today, animal studies and clinical trials investigating chemotherapy showed sex imbalance. Chemotherapy has been used without consideration of sex differences, resulting in disparity of efficacy and toxicity between sexes. Based on accumulating evidence supporting sex differences in chemotherapy, all clinical trials in cancer must incorporate sex differences for a better understanding of biological differences between men and women. In the present review, we summarized the sex differences in (1) incidence and mortality of cancer, (2) genetic and molecular basis of cancer, (3) sex hormones in cancer incidence, and (4) efficacy and toxicity of chemotherapy. This review provides useful information for sex-based chemotherapy and development of personalized therapeutic strategies against cancer.

8.
Arch Pharm Res ; 39(8): 1021-31, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27384063

RESUMO

The association between inflammation and cancer has been studied widely. Indeed, the tumor microenvironment is influenced by inflammatory cells and affects tumor progression, tumor growth, and the survival of cancer cells. Also, the tumor microenvironment is essential to invasion and metastasis of cancer. Fibroblasts, immune cells, the extracellular matrix and other various components all constitute the tumor stroma, ordinarily referred to as the 'reactive stroma'. Cancer-associated fibroblasts (CAFs), which are activated fibroblasts and one of the components of the tumor microenvironment, are associated with cancer progression, invasiveness and metastasis, and their functional contributions to these processes are beginning to emerge. CAFs mediate tumor-promoting inflammation through various signaling pathways. Epithelial-mesenchymal transition is a process for producing mesenchymal cells during invasion and metastasis of cancer cells. Fibroblasts have been identified as a key player in this mechanism. In the present review, we summarize the relationships between fibroblasts, inflammatory response, the tumor microenvironment and cancer progression. This review provides useful information for the development of cancer prevention and treatment therapies through controlling the inflammatory responses.


Assuntos
Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Fibroblastos/patologia , Humanos , Invasividade Neoplásica/patologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...